3.4 单数据源多出口案例(选择器)

3.4.1 案例需求

使用 Flume-1 监控文件变动,Flume-1 将变动内容传递给 -2,Flume-2 负责存储到HDFS。 同时 Flume-1 将变动内容传递给 Flume-3,Flume-3 负责输出到Local FileSystem。

3.4.2 需求分析

3.4.3 操作步骤

步骤1: 准备工作

创建两个目录:

  1. /opt/module/flume/job 目录下创建一个目录group1, 将来在这个目录下存放我们 3 个 agent 的配置文件.

  2. /opt/module/datas 目录下创建一个目录flume3, 这个目录作为flume3 sink数据的目录.

步骤2: 创建 agent1 的配置文件

文件名: flume-file-flume.conf

文件内容如下:

# Name the components on this agent
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
# 将数据流复制给所有channel
a1.sources.r1.selector.type = replicating

# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /opt/module/hive-2.3.3/logs/hive.log
a1.sources.r1.shell = /bin/bash -c

# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop201 
a1.sinks.k1.port = 4141

a1.sinks.k2.type = avro
a1.sinks.k2.hostname = hadoop201
a1.sinks.k2.port = 4142

# Describe the channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

a1.channels.c2.type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1 c2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c2

说明:

  • Avro 是由 Hadoop 创始人 Doug Cutting 创建的一种语言无关的数据序列化和 RPC 框架。
  • RPC(Remote Procedure Call)远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。

步骤3: 创建 agent2 的配置文件

上级是agent1, sink 到 HDFS

文件名: flume-flume-hdfs.conf

文件内容如下:

# Name the components on this agent
a2.sources = r1
a2.sinks = k1
a2.channels = c1

# Describe/configure the source
a2.sources.r1.type = avro
a2.sources.r1.bind = hadoop201
a2.sources.r1.port = 4141

# Describe the sink
a2.sinks.k1.type = hdfs
a2.sinks.k1.hdfs.path = hdfs://hadoop201:9000/flume2/%Y%m%d/%H
#上传文件的前缀
a2.sinks.k1.hdfs.filePrefix = flume2-
#是否按照时间滚动文件夹
a2.sinks.k1.hdfs.round = true
#多少时间单位创建一个新的文件夹
a2.sinks.k1.hdfs.roundValue = 1
#重新定义时间单位
a2.sinks.k1.hdfs.roundUnit = hour
#是否使用本地时间戳
a2.sinks.k1.hdfs.useLocalTimeStamp = true
#积攒多少个Event才flush到HDFS一次
a2.sinks.k1.hdfs.batchSize = 100
#设置文件类型,可支持压缩
a2.sinks.k1.hdfs.fileType = DataStream
#多久生成一个新的文件
a2.sinks.k1.hdfs.rollInterval = 600
#设置每个文件的滚动大小大概是128M
a2.sinks.k1.hdfs.rollSize = 134217700
#文件的滚动与Event数量无关
a2.sinks.k1.hdfs.rollCount = 0
#最小冗余数
a2.sinks.k1.hdfs.minBlockReplicas = 1

# Describe the channel
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1

步骤4: 创建 agent3 的配置文件

上级是agent1 sink 到本地目录

文件名: flume-flume-dir.conf

文件内容如下:

# Name the components on this agent
a3.sources = r1
a3.sinks = k1
a3.channels = c2

# Describe/configure the source
a3.sources.r1.type = avro
a3.sources.r1.bind = hadoop201
a3.sources.r1.port = 4142

# Describe the sink
a3.sinks.k1.type = file_roll
a3.sinks.k1.sink.directory = /opt/module/datas/flume3

# Describe the channel
a3.channels.c2.type = memory
a3.channels.c2.capacity = 1000
a3.channels.c2.transactionCapacity = 100

# Bind the source and sink to the channel
a3.sources.r1.channels = c2
a3.sinks.k1.channel = c2

注意:

  • 输出的本地目录必须是已经存在的目录,如果该目录不存在,并不会创建新的目录。

步骤5: 分别启动 3 个 Flume

flume-ng agent -c conf -f job/group1/flume-flume-dir.conf -n a3
flume-ng agent -c conf -f job/group1/flume-flume-hdfs.conf -n a2
flume-ng agent -c conf -f job/group1/flume-file-flume.conf -n a1

步骤5: 启动集群和 Hive

步骤6: 检测 HDFS 和 本地目录上的数据

Copyright © 尚硅谷大数据 2019 all right reserved,powered by Gitbook
该文件最后修订时间: 2018-11-20 18:14:17

results matching ""

    No results matching ""