5.1 Shuffle 的核心要点

在划分 Stage 时,最后一个 Stage 称为finalStage(变量名),它本质上是一个ResultStage类型的对象,前面的所有 Stage 被称为 ShuffleMapStage

ShuffleMapStage 的结束伴随着 shuffle 文件的写磁盘。

ResultStage 基本上对应代码中的 action 算子,即将一个函数应用在 RDD的各个partition的数据集上,意味着一个job的运行结束。


5.1.1 Shuffle 流程源码分析

我们从CoarseGrainedExecutorBackend开始分析

启动任务

override def receive: PartialFunction[Any, Unit] = {

    case LaunchTask(data) =>
        if (executor == null) {

        } else {
            val taskDesc = ser.deserialize[TaskDescription](data.value)
            // 启动任务
            executor.launchTask(this, taskId = taskDesc.taskId, attemptNumber = taskDesc.attemptNumber,
                taskDesc.name, taskDesc.serializedTask)
        }
}

Executor.launchTask 方法

def launchTask(
                  context: ExecutorBackend,
                  taskId: Long,
                  attemptNumber: Int,
                  taskName: String,
                  serializedTask: ByteBuffer): Unit = {
    // Runnable 接口的对象.
    val tr = new TaskRunner(context, taskId = taskId, attemptNumber = attemptNumber, taskName,
        serializedTask)
    runningTasks.put(taskId, tr)
    // 在线程池中执行 task
    threadPool.execute(tr)
}

tr.run方法

override def run(): Unit = {
    // 更新 task 的状态
    execBackend.statusUpdate(taskId, TaskState.RUNNING, EMPTY_BYTE_BUFFER)
    try {
        // 把任务相关的数据反序列化出来
        val (taskFiles, taskJars, taskProps, taskBytes) =
            Task.deserializeWithDependencies(serializedTask)

        val value = try {
            // 开始运行 Task
            val res = task.run(
                taskAttemptId = taskId,
                attemptNumber = attemptNumber,
                metricsSystem = env.metricsSystem)
            res
        } finally {  
        }
    } catch {
    } finally { 
    }
}

Task.run 方法

final def run(
                 taskAttemptId: Long,
                 attemptNumber: Int,
                 metricsSystem: MetricsSystem): T = {
    context = new TaskContextImpl(
            stageId,
            partitionId,
            taskAttemptId,
            attemptNumber,
            taskMemoryManager,
            localProperties,
            metricsSystem,
            metrics)
    try {
        // 运行任务
        runTask(context)
    } catch {

    } finally {

    }
}

Task.runTask 方法

Task.runTask是一个抽象方法.

Task 有两个实现类, 分别执行不同阶段的Task

ShuffleMapTask源码分析

ShuffleMapTask.runTask 方法

override def runTask(context: TaskContext): MapStatus = {

    var writer: ShuffleWriter[Any, Any] = null
    try {
        val manager = SparkEnv.get.shuffleManager
        // 获取 ShuffleWriter
        writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)
        // 写出 RDD 中的数据.  rdd.iterator 是读(计算)数据的操作. 
        writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])
    } catch {
    }
}

具体如何把数据写入到磁盘, 是由ShuffleWriter.write方法来完成.

ShuffleWriter是一个抽象类, 有 3 个实现:

根据在manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)中的dep.shuffleHandlemanager来决定选使用哪种ShuffleWriter.

ShuffleManager

ShuffleManage 是一个Trait, 从2.0.0开始就只有一个实现类了: SortShuffleManager

registerShuffle 方法: 匹配出来使用哪种ShuffleHandle

override def registerShuffle[K, V, C](
                                         shuffleId: Int,
                                         numMaps: Int,
                                         dependency: ShuffleDependency[K, V, C]): ShuffleHandle = {
    if (SortShuffleWriter.shouldBypassMergeSort(SparkEnv.get.conf, dependency)) {
        new BypassMergeSortShuffleHandle[K, V](
            shuffleId, numMaps, dependency.asInstanceOf[ShuffleDependency[K, V, V]])
    } else if (SortShuffleManager.canUseSerializedShuffle(dependency)) {

        new SerializedShuffleHandle[K, V](
            shuffleId, numMaps, dependency.asInstanceOf[ShuffleDependency[K, V, V]])
    } else {
        new BaseShuffleHandle(shuffleId, numMaps, dependency)
    }
}

getWriter 方法

/** Get a writer for a given partition. Called on executors by map tasks. */
override def getWriter[K, V](
                                handle: ShuffleHandle,
                                mapId: Int,
                                context: TaskContext): ShuffleWriter[K, V] = {
    // 根据不同的 Handle, 创建不同的 ShuffleWriter
    handle match {

        case unsafeShuffleHandle: SerializedShuffleHandle[K@unchecked, V@unchecked] =>
            new UnsafeShuffleWriter(
                env.blockManager,
                shuffleBlockResolver.asInstanceOf[IndexShuffleBlockResolver],
                context.taskMemoryManager(),
                unsafeShuffleHandle,
                mapId,
                context,
                env.conf)
        case bypassMergeSortHandle: BypassMergeSortShuffleHandle[K@unchecked, V@unchecked] =>
            new BypassMergeSortShuffleWriter(
                env.blockManager,
                shuffleBlockResolver.asInstanceOf[IndexShuffleBlockResolver],
                bypassMergeSortHandle,
                mapId,
                context,
                env.conf)
        case other: BaseShuffleHandle[K@unchecked, V@unchecked, _] =>
            new SortShuffleWriter(shuffleBlockResolver, other, mapId, context)
    }
}
Copyright © 尚硅谷大数据 2019 all right reserved,powered by Gitbook
该文件最后修订时间: 2019-04-08 15:39:07

results matching ""

    No results matching ""